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The University of Houston-Clear Lake established the Research Institute for
= Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to activeiYofthis support researChuH.ClearintheLakeComputingpr0_d,aand --JThe information sciences. AS part endeavor,
partnership with JSC to jointly define and manage an integrated program of research

RICIS in advanced data processing technology needed for JSe's main missions, including j
administrative, engineering and science responsibilities. JSC agreed an_dentered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

_"VOl_Cl:_# jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to Conduct the research. ]
The mission of RIC!S is to conduct, coordinate and disseminate research on J

computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of .... =_

faculty and students from each 0f the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizationsare involved via the "gateway" concept. UH-Clear

Lake establishes relationships with other universities and research organizatiorl_ +_

having common research interest, ioprovide additi0n_ sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and+ !nformjation

sciencesl Working jointly with NASA/JSC, RICIS advises on research needs, _

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the cooperative goals of UH-Clear Lake and NASA/JSC.
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Periodic-Disturbance Accommodating Control of the Space

Station for Asymptotic Momentum Management *

E

u

Wayne Warrentand Bong Wie:

The University of Texas at Austin
Austin, Texas

David Geller s

NASA 3ohnson Space Center

Houston, Texas

Abstract

°

Periodic maneuvering control is developed for asymptotic momentum manage-

ment of control moment gyros used as primary actuating devices for the Space

Station. The proposed controller utilizes the concepts of quaternion feedback con-

tr01 and periodic-disturbance accommodation to achieve oscillations about the con-

stant torque eqdilibrium attitude, while minimizing the control effort required.

Three-axis coupled equations of motion, written in terms of quaternions, are de-
....

rived for roll/yaw controller design and stability analysis. It is shown that the

quaternion feedback controller is very robust for a wide range of pitch angles. It is

also shown that the proposed controller tuItes the open-loop unstable vehicle to a

stable oscillatory motion which minimizes the control effort needed for steady-state

operations.
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Iatroductlon

The Space Station will employ CMGs (control moment gyros) as prirna.ry actu-

ating devices during normal flight mode operation. Gravity-gradient torques will

be used for CMG momentum unloading. The effect of a constant aerodynamic

torque on a gravitationally stabilized spacecraft was first studied by Garber [1].

Such torques produce constant attitude angles for which aerodynamic and gravi-

tational torques are balanced. Garber has shown that small roll/yaw librational

motions are affected by large pitch angles. The aerodynamic disturbance torques

acting on the Space Station are expected to have constant values plus periodic com-

ponents caused mostly by the effects of solar panel rotations and Earth's diurnal

bulge. As a result, attitude and CMG momentum oscillation about the torque equi-

librium attitude will occur. A recent study [2] demonstrates the usefulness of the

linear-quadratlc-regulator synthesis technique and the concept of periodic distur-

bance accommodation in minimizing attitude and/or CMG momentum osciUations

as needed for mission requirements,

This paper is primarily concerned with attitude control and CMG periodic dis-

turbance rejection for large-angle pitch maneuvers of the Space Station. New results

and control concepts are used to extend the control scheme developed in [2]. Pitch-

coupled roll/yaw equations of motion, first discussed in [1], and written in terms

of Euler angles, are derived here in terms of quaternions. It is shown that these

equations are well suited for use in designing a roll/yaw controller for large pitch

motions of" the Space Station. A simple concept of using quatemions for the con-

trol of spacecraft large-angle maneuvers has been developed in [3, 41. The concept

is extended here to a more complicated case of controlling both the attitude and

CMG momentum of the Space Station. Furthermore, this paper presents a new

control concept of asymptotic momentum management of the CMGs, which tunes

the open-loop unstable vehicle to a stable oscillatory motion during steady-state

operations, while minimizing the control effort needed.

Figure 1 is a functional block diagram representation of a quaternion feedback

control system proposed for the Space Station. The attitude determination sys-

tem utilizes rate gyros and star trackers to compute inertial quaternions and the

absolute angular velocity of the Space Station. Relative quaternions with respect
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to a local reference frame are then computed for control purposes. The proposed

attitude/momentum controller utilizes relative quaternions, body rates (or relative

quaternion rates), and CMG momenta to generate proper control torque commands

to the CMGs.

Mathematical Models
_ ±

In this section, equations of motion for the Space Station in a circular orbit are

derived in terms of quaternions. For simplicity, the Space Station is assumed to

be a single rigid body. Emphasis is on the rise of quaternions in the equations of

motion and in feedback control. Quaternions define the rigid body attitude as an

Euler-axis rotation. The vector part of the quaternions indicates the direction of the

Euler axis. The scalar part of the quaternions is related to the rotation angle about

the Euler axis. Detailed discussion of the kinematics associated with quaternions

and Euler angles can be found in many texts (see, e.g., [5, 6]).

The relationships between quaternions and Euler angles, for the pitch-yaw-roll

body-axis rotation sequence used in this paper, are

q_ cos(Ol/2)sin(O2/2)cos(03/2) + sin(Ol/2)cos(O2/2)sin(O3/2)

q3 cos(O_/2)cos(82/2)sin(83/2) - sin(O,/2)sin(O2/2)cos(83/2) (1)

q4 cos(O,/2)cos(82/2)cos(83/2) - sin(O,/2)sin(O2/2)sin(83/2)

where (8,, 82, 83) are the roll, pitch, and yaw Euler angles of the body axes with

respect to the local vertical and local horizontal (LVLH) axes, ,vh'ch rotate with

the orbital angular velocity; and (q,, q2, q3) are the vector parts of the quaternions

which indicate the direction of the Euler axis while q4 is the scalar part of the

quaternions and is related to the angle of rotation about the Euler axis. Inverse

relations may a/so be written as:

[2(q,q4 -- q2q3)
@1 : tan -I. L l_'_q_ ___2-_q32

[2(q2q, - q, q3)
= tan-'Li:T4 (2)

03 = sin-' [2(q, q2 + q3q4)] •

The nonlinear equations of motion and attitude kinematics for the Space Station

are as follows:

3
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Space Station Dynamics:

4- 3n 2

m

0 -c3 c2
c3 0 -cl

-c2 cl 0

0
_33

r.
&l
!31

0 -wl

¢.O1 O

h2 h3 c2
!32 .r_ c3

AI /_2 /_3 _2
Al A2 /33 _3

+

-ul + wl ]

]--u2 + w2

-- u3 + w3

(3)

where

Zh
cl ---- 2(qlq3- q2q4)

Z_
c2 - 2(qlq4 + q2q3)

Attitude Kinematics (with respect to LVLH):

I ]q2 I

CMG Momentum:

0 _3 --W2 "J- Tt bJ! -

--w3 0 wl w2 4- n

u_2 -- n -- _I 0 co3

--(,d I --(_d 2 -- r/, -- /'_J3 0

ql

q2

q3

q4

(4)

A_
h3

I 0 m (.O3 _J2
+ w a 0 -wl

-w2 wl 0
{hiI {u]h2 - u2

h3 u3

(5)

and (wl, w_, [,,3) are thi_ b0dy-axis components of the absolute angular velocity of

the Space Station; Iii (i = j) are the moments of inertia; Iii (i _ j) are the products

of inertia; (hi, h_, h3) are the body-axls components of the CMG momentum; (ul,

u2, Us) are the body-axis components of the control torque; (wl, W2, ws) are the

body-axis components of the external disturbance torque; and n is the orbital rate

of 0.0011 rad/sec.

When body and control axes are _.ligned with the principal axes of the Space

Station (11 a a a=Ill,/2 = I_2,/3 = /33), Eqs. (3) become

I1d.,1 -(A - I3)w2w3 + 6n_(f2 - I3)(qtq._ + q2q3)(1 - 2q_ - 2q_) = -ul + wl

I2_ - (I3 - I1)w!w3 + 6n2(Iz - Ii)(qlq3 -- q2q4)(1 -- 2q_ -- 2q_) = --u_ + w_ (6)

[zw3 -- (I1 -- I2)w_u)_ + 12n_(/'_ -- I2)(q_q3 -- q2q4)(q_q4 4- q_q3) = --u3 4- w3.
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These equations can also be found in [5]. In this paper, however, we present a new

set of equations determined by linearizing the above equations for the case of large

pitch angles with small roll/yaw attitude changes. In this case, Eqs. (4), (5), and (6)

can be linearized with respect to q, and q_ as follows:

Space Station Dynamics:

I1_ + n(I2 - I3)wa + 6n2(I2 - I3)(q4 - 2q4qg)ql

+ 6_(z_- A)(2q_q_- q=)q_= -u, + w_ (Ta)

A_ + 6n'([, --&)(q2q, --2q4q_)= --u2+ w, (Tb)

13_ + n(It - 12)w, - 12n2(A - A)(q2q])qt

- _2,-?(z,- z_)(q,q_)q_= -,,, + w_ (7¢)

Attitude Kinematics (with respect to LVLH):

q4 q2
?h = _wl + _3 + nqa

q4
_ -- ._(_ + ,.,)

q2 , q4
ita -'_wt -e Tw3 - nql

q_
4, = -y(_ + n)

CMG Momentum:

h2 = U2

ha + nhl = u3

(8a)

(8b)

(8¢)

(8d)

(9)

For the case with large pitch angles and small roll/yaw attitude changes, the re-

lationships between quaternions and Euler angles can be simplified by linearizing
_ -9 :

with respect to 0t and 03 • Equations .(1) then reduce to

q2 = sin 0.2 (10a)
2

q4 = cos T (10b)

q3 = 2 -q_ q4 03 (lOc)

p



Inverse relations for Eqs. (10c) are written a_ _-.....

[e,] [q,_q,][q,]e3 = 2 . (11)q2 q4 q3

Equations (7) and (8) may be used to derive the Space Station equations of motion

in terms of quaternions, written as follows:

][
-I- n 2 [ (I2-/'3)(4q4- 6q4q_)([2 -- [1)(q2 + 6q2q_)

2

6 + n('rl - 12+ 13) -q2 -q4q4 --q2 q3

(
,._ - z_)(q,+ 6q,q_) q3

t_

I

w

.I

U

-ul + wl ] (12a)--Us -{- w3
mm

(rib)
1

A[q,&- q_i,]+ 3n_(13- r_)(2q4q_- q,q_)= _(-,_ + w_).

The quaternion relations of Eqs. (10) may be used to transform Eqs. (12) to the

following known form [1, 6] involving only Euler angles:

x_, + .2(_2- 5)(1 + 3cos2e2)el- n(.r_- I_+ _)e3

+ a.2(.r_- _)(sine_co_e_)e_= -.1 + w_ (13_)

x_/i2+ 3._(xl - .r_)sin0_cosO_= -._ + w_ (135)

1303 q-n2(I2- 11)(1 Jr3sin:Z02)O3-5 n(l_ - 12 + 13)0_

+ 3._(r_- r_)(sine_cose_)e,= -_ + m. (13c)

A final linearization with respect to small pitch motions leads to the following well-

known equations of motion:

(14_)

(14b)

(14c)

Space Station Dynamics:

,r3e3+ n_(h- _i)_3+ _U,- & + _)e_= -_3+ m

Attitude Kinematics (with respect to LVLH):

(z_a)

(_b)

(1_c)

81 -- n@3 = o.,'1
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These llnearized equations are used in [2] for the case of small roll, pitch, and

yaw attitude changes. In this paper, emphasis is on the use of Eqs. (7) for the

momentum/attitude control of the Space Station having small roll/yaw attitude

changes but large-angle pitch motions.

Inertia values for the Phase 1 Space Station, as well as assembly flight 3, are

listed in Table 1. Table 2 includes expected aerodynamic disturbances which are

modeled as a bias plus periodic terms in the body-flxed control axes:

w(t)-- Bias -t- A,s!n(nt÷¢l) -b A2_sin(2nt-b¢2 ) -b A3,_sin(3nt-t-¢3) -bA4,_sin(4nt-t-_b4)

The disturbance torque acting in each axis is determined from data generated at

NASA Johnson Space Center by a nonlinear simulation program. The program

simulates translational and rotational motions of the Space Station in orbit about

a_n oblate E_th. Itjncludes rotating solar panels, time-varying surface areas, and

time-varying center-of-pressure locations. A Jacchia-Lineberry atmospheric model

is us¢.d to compute density variations. The dominant aerodynamic torque frequen-

cies at n and 2n are caused by Earth's diurnal bulge and solar panel rotation

effects, respectively. Actual magnitudes and phases of these disturbance torques

are assumed unknown for control design.

Control Issues

Before presenting the pitch and roll/yaw controller designs, it is important to

clarify some issues related to the effects of large pitch motions and inertia value

uncertainties on the stability of the controlled Space Station. A characteristic of

momentum/attitude control using gravity-gradient torque is that pitch, roll, and

yaw responses will settle down to, or oscillate about, a constant torque equilibrium

attitude (TEA). Primary factors involved in determining the constant pitch TEA

are the magnitude of the bias in the disturbance torque and the numerical difference

between roll and yaw moments of inertia. This can be seen by stud)qng the steady-

state form of Eq. (14b):

_= _v
3n_(Il - I3)

7
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where _-_isthe pitch TEA angle and ¢vis the bias of the pitch disturbance torque.

Pitch gravity-gradient torque is largest when the pitch attitude is 45 degrees.This

is predicted in Eq. (13b) where, at the steady-state,

2¢v
sin = _ :3)

It may be necessary to consider this w0rst-ease pitch TEA in control system design.

After switching to CMG mode from some other modes (e.g., reboost mode utilizing

reaction jets), the Space Station must be able to achieve TEA in each axis without

CMG momentum or commanded torque saturations.

The large motions possible in the pitch axis emphasize the importance of using

Eqs. (7), (12), or (13) in designing the control system. These equations show the

dependence of roll/yaw dynamics on pitch attitude. In fact, a roll/yaw closed-

loop system designed for small pitch angles may become unstable at large pitch

angles; therefore, roll/yaw closed-loop stability must be checked at various pitch

TEA values.

Other factors affecting closed-loop stability are uncertainties and variations in

moments and products of inertia. In particular, the magnitude of the pitch gravity-

gradient torque depends on the difference between the roll and yaw moments of

inertia. If these inertias are nearly equal (e.g., see Table 1, assembly flight 3 data),

pitch gravity-gradient torque is very small and the pitch TEA (if it exists) is large.

In addition, very small uncertainties in the moments of inertia can cause the system

to become unstable. A discussion of the importance of checking closed-loop system

robustness with respect to inertia uncertainties, by varying inertia values in art

appropriate 'direction', is included in the appendix of this paper.

Under normal operating conditions, the Space Station will have rotating solar

arrays. This causes time-varying (sinusoidal) roll and yaw moments of inertia, and

consequently, a similarly time-varying gravity-gradlent torque in the pitch axis ,as

shown in Fig. 2. If the bias value of I, (t)-I3(t) is such that the pitch gravity-gradient

torque never changes sign, the system will remain stable. If the gravity-gradient

torque does switch signs, the system may become unstable, depending upon the how

long the sign of the torque is changed. For sufficiently short periods of this opposite

torque, the system will be stable with large, bounded responses about the TEA. If

gravity-gradlent torque is to ultimately be used in momentum/attitude control, the

8
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above factors will be useful in the design of the inertia configuration. Consideration

should be given to defining a boundary near the point or condition corresponding

to zero pitch-axis gravity-gradient torque, defined by 11(t) -13(t) = 0. This is

illustrated in Fig. 2. The boundary may be thought of as the minimum gravity-

gradient torque allowed in the pitch axis for which closed-loop stability, with respect

to inertia uncertainties) is maintained.

In the next sections, the pitch and roll/yaw controller designs are presented

along with time simulations of the closed-loop system. In this paper, we expand

on the previous study [2] by developing a periodic maneuvering controller which

achieves asymptotic momentum management of the CMGs in all three axes. The

Phase 1 inertia configuration listed in Table 1 is used. Effects of products of inertia

are assumed negligible. The corresponding time-varying gravity-gradient torque

in the pitch axis does not change sign; however, the time simulations presented

here use the assumption that inertia values remain constant while periodic terms

in the aerodynamic torque include solar panel rotation effects. Large pitch TEA

resp6nses are produced by introducing an appropriately large bias in the pitch-axis

disturbance torque.

Pitch Control

In this section, the pitch-axis controller is developed for attitude and CMG

m_m_ntum control. It is s-la0wnin [i] that disturbance rejection filters can be used

to reject ei:;her attitude or CMG momentum oscillations occurring at the frequencies

present in the disturbance torques. Since asymptotic momentum management of

the CMGs in all three axes is-of primary interest in this paper, the disturbance

rejectlon filters for the pitch axis have the following forms:

a'2 + (n)2a2 = h2

_2 + (2n)2_2 = h_

_]2 + (3n)_72 = h2

+ (4n)2rh = h2

-f3_-:-::

where initial conditions for the filter states can be arbitrarily selected (usually zero

initial conditions). Use of filters at frequencies n, 2n, 3n, and 4n is indicated by



m

aerodynamic torque data generated by a nonlinear simulation program written for

the Space Station. The pitch-axis control logic is given by a single control input

invoivlngiwelve states:

u2 - K2x2 (16)

where

A
K2 = a 1 × 12 gain matrix

x2= q2 02 h2 f h2 _2 a2 _ _2 "I2 5'2 _2 i72 T

The control task is to find proper gains for this twelve-state feedback controller.

In order to use linear control design methodologies, Eq. (7b) must be linearized

for small pitch motion. This results in Eq. (14b), which is used as the basis for pitch

control analysis and design. Various techniques may be used in selecting the twelve

gains of Eq. (16). These include linear-quadratic-regulator (LQR) synthesis [7]

and direct assignment of closed-loop eigenvalues using a pole-placement technique.

Several iterations of any method may be required to achieve satisfactory closed-loop

performance and robustness. Note that gains resulting from Eqs. (14b) are for the

use of 02 in state feedback. In order to accommodate q2 for use in feedback, the

gains corresponding to states q2 and q2 are doubled since the approximation used

for q2 is 05/2. New gains do not need to be computed for the pitch controller in

the case of large pitch motion. It is mostly roll/yaw destabilization at large pitch

angles which forces pitch-axis instability.

The open-loop pitch axis of the Phase 1 inertia configuration is unstable, with

poles at s = =i:l.5n, 0, 0, and filter poles at s = :i=jn, 4-j2n, :i:j3n, :t=j4n. One pole

at s = 0 comes from the integral feedback of h2. After iterative use of an LQR

synthesis code, available in CTRL-C software, a set of closed-loop eigenvalues have

been selected and are listed in Table 3. The corresponding gain set is given in

Table 4. Closed-loop pitch responses of Eq. (6), for:a pitch-axis maneuver of -30

degrees (caused by a large pitch-axis torque bias), can be seen in Figs. 4, 5, and 6.

Comments on the responses are reserved until after the presentation of the roll/yaw

controller design.
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Roll/Yaw Control

The roll/yaw controller has a structure similar to that of the pitch controller. By

10
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examining the open-loop transferfunction matrix from control inputs to r011/yaw

attitudes and CMG momentum, itisshown in [2]that a periodic disturbance at the

orbitalrate_can be rejected in the yaw attitude but not in the rollattitude. The

analysis isaccomplished using Eqs. (9) and (14),which assume small motions in all

axes. In an effortto determine ifitispossible to have periodic-disturbance rejection

in both rolland yaw attitudes for thisdiR'erentcase involving large pitch motions,

a similar analysis is considered here using the pitch-coupled roll/yaw dynamics

described by Eqs. (13).

By combining Eqs. (9) and (13), the transfer function matrix from (ul,u3) to

(01,03) can be written as

Oa(s)

where

E L G31(...,)c:,_(,.,,) ,.,:,(.,)

_ c,,(.,) = -[z3..,'+ (1+ 3,q),-,'(z,, ,_,)][..,_+ ,_]

c,_(_)= -[n(rl - r_+ &)_- 3n_(&- &)_][,_: + n:]

Ga,(s) = In(I, - I_ + lr3)s + 3n2(I2 - I1)s2c_][s 2 + n 2]

G33(S ) -" --[IT1,,,.¢ 2 + (1 + 3C_)n2(I2 -- &)][32 'Jl- n 2]

= r,&(_' + n:){_ ' + n_[1+ 3k, + k,k_+ 3(k_- k,)_]_: +

and s2 = sin02, c2 -- cos02, k I = (& -/3)/]'1, and k3 - (& -&)/& • Transmission

zeros at :t:jn appear in the transfer function matrix. It would seem that periodic

disturbances of frequency n cannot be rejected in either the roll or yaw attitudes;

however, for CMG momentum and control torque relations defined by

and with appropriate alterations of Eqs. (13), the transfer function matrix from

(ul,u3) to (0,,63) can be written as

[ o,(_)] 1 [ c,,(,.,)e.:,(,.,)= _ v:,,(..,)

11

w



where :

c. = (_)(-r3_3+ ._[3(rl - r2)_- r3]_+ 3.3(:_- r3)_c2}

c_ = (n_){(:_- z,)__+ [3.(h - :_)_¢& + (z + 3_)._(x_ - r_)}

c_ = -(._)((r, x_)_2+ (z + 3_)._(r_ - r_)}

/x = r,_(S'){_' + _'[1 + 3k, + k,k. + 3(k_- k,)_]_' +

[3n3(k3- kl)s2c2ls + 4n, klk3}.

Transmission zeros are not apparent in these expressions. A numerical analysis

reveals, however, that there are transmission zeros at 4-jn for the transfer functions

from u_ and us to r6ii attitudel While yaw attitude has no troublesome zeros. These

results show that, even for the case of pitch-coupled roll/yaw dynamics, there is

an inability to reject roll attitude oscillations occurring at the orbital rate. Hence,

in this paper, periodic-disturbance rejection for CMG momentum in both the roll

and yaw axes is considered. That is, a periodlc control of the Space Station for

asymptotic momentum management of the CMGs in all three axes is of primary

interest here,

Periodic-disturbance rejection filters for the roll/yaw axes can be represented

as:

_I -{- (3n)2_/1 -- hi

rh + (4n)2rh -- hl

_3 -{- (n)2c_a ----h3

5

The roll/yaw control logic involving two control inputs and twenty-four states

12
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where

K - a 2 x 24 gain matrix

Z_

x, = [q, h, f h, a, 8, 0", ]'(rollst tes)

X3 "-[q3 w3 ]13 f h3 _3 _3 Z3 83 0'3 73 }'/3 _3 ]r(yawstates).

The pitch-coupled roll/yaw equations described by Eqs. (7) are used as the basis

for the roll/yaw controller design. It is evident in the pitch-coupled equations that

roll/yaw dynamics are dependent upon pitch attitude. Consideration must be given

to the pitch-axis TEA when designing the roll/yaw controller gains. Equations (7)

(or Eqs. (12) or (13)) are especially useful for this purpose when q2 and q4 in the

equations are assigned their respective values corresponding to the expected pitch

TEA (see Eqs. (10a) and (10b)). As a result, Eqs. (7a) and (7c) become linear

and any linear control design methodologies may be used to design the roll/yaw

controller gains.

For spacecraft influenced by gravity-gradient torques, it is interesting to examine

the change s i n roU/yaw open-loop e!genvalues that occur as the pitch bias changes.

Thls was first studied by Garber [1]. A root locus of open-loop eigenvalues versus

pitch angle, for the Phase 1 inertia configuration, is shown in Fig. 3. It can be seen

_ ti{ai_:t_he0pen-ioop"r0il/yaw dynamics are not very sensitive to pitch attitude. The

Space Station is unstable with poles at s - =t=l.05n4-j0.7n, 0, 0, :kjn, and filter poles

at s = :t:jn, =i:jn, +j2n, +j2n, 4-j3n, :i=j3n, 4-j4n, =i:j4n (for 82 = 0 ° where q2=O and

q4=l). The double pole at s = O occur because of the integral feedback of ht and

h3.

After it'erative use of an LQR synthesis code, closed-loop eigenvalues have been

selected and are listed in Table. 3. A gain set for Eqs. (17), corresponding to a

pltchTEA of 0', is listed in Table. _ 4. For these gains, the closed-loop roll/yaw

axes are stable for pitch angles ranging from -21 ° to +23 °. Since a simulation of

the large-angle pitch maneuver needed to reach a pitch TEA of -30 ° is desired,

a different gain set is used for the simulations presented in this paper. For these

_alns:°the closed:loop roll/yaw'axeS are st_bie for pitch angles ranging from -48 °

to +3 °. Closed-loop roll/yaw responses of Eqs. (6), for a pitch-axis maneuver of

-30 degrees, can be seen in Figs/41 5, and 6. The overall closed-loop system has a

10 dB gain margin anti a phase margin of 60 ° in each control loop.
÷ :
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Discussion of Simulation Results

Closed-loop responses for a simulation of the nonlinear dynamics described by

Eqs. (6) are shown in Figs. 4, 5, and, 6. Quantities plotted include quaternions,

CMG momenta, and control torques. Initial conditions Corresponding to 0t(0) =

82(0) = 03(0) = 1 degree and 01(0) = 02(0) = 0z(0) = 0.001 deg/sec are assumed.

Allowable limits on CMG momentum and commanded torque are assumed to be

30,000 ft-lb'sec and 150 ft-lb, respectively.

In the roll axis, quaternion ql oscillates (4-0.7*) aboul/a roll TEA of -0.003

(0t = -0.5*). Roll CMG momentum hi is the input to the roll-axis disturbance

rejection filter and settles down to zeio after reaching a maximum Value near 8000

ft-lb-see. Control torque ul is zero at the steady-state and has a peak value near

23 fi-lb. In the pitch axis, quaternion q_ oscillates (4-4.3*) about a pitch TEA of

-0.257 (82 = "30'): The large-angle=maneuver causes thepitch CMC momentum

h2 (disturbance filter input) to become quite large at nearly 18,000 ft-lb-sec, before

settling to zero. Control torque u2 is Zero at the steady-state With a maximum value

near 30 ft-lb. In the yaw axis, quaternion qz oscillates (4-1.2") about a yaw TEA

of -0.013 (03 = -1.5°): Yaw CMC momentum hz (disturbance filter input) settles

down to zero after reaching a maximum value close to 600 ft-lb-sec. Control torque

u3 is zero at the steady'state, and reaches a maximum value near 12 ft-lb.

The simulations show that the proposed control scheme tunes the open-loop

unstable Space Station ton stable, oscillatory motion which minimizes control effort

dur:ng steady-state operations. For the assumed disturbance torque models (with

unknown magnitudes and phases), the stabilized Space Station needs no control

torque at steady-state conditions. Analysis shows, however, that small-amplitude

periodic components of frequencies 5n and 6n are present in ul and u3 at the steady-

state. These small residual components are caused by the coupling between the pitch

and roll/yaw axes, and become particularly noticeable for large pitch biases.

There is an interesting feature of the quaternion feedback scheme which is not

apparent from the simulation responses. If rejection of pitch and yaw attitude

oscillations is desired, it seems natural to use q2 and q3 as inputs to the respective

disturbance reject_on_iterS. Even: though _andq2 q3_vill=become constant at the

steady-state, all of the Eulcr angles will oscillate. A study of Eqs. (2) (or Eqs. (11))

14

v

w

im



F

EJ

r

L_

reveals why. By assigning constant values to q2, q3, and q4 in Eqs. (2) (or Eqs. (11)),

it can be seen that 8_, 82, and 6_ are all functions of q_, which oscillates. The same

may be said for ql, q2, q3, and q4 if Euler angle feedback is used. For oscillations of gl

and constant values for 02 and _3, Eqs. (1) show that all quaternions are functions of

81 and will therefore oscillate. In either case, however, these oscillations are small.

The important point is that the elimination of pitch or yaw oscillations, if needed,

: may be accomplished by using Euler angles 82 and _3 as disturbance rejection filter

inputs (with appropriate gain changes).

:: _A check of closed-loop robustness with respect to inertia uncertainties empha-

sizes an important issue associated with the Phase 1 inertia configuration. By se-

Iec_ng specific 'directions' in which to vary the three moments of inertia (I_, I_, I3),

the closed-loop system can be shown to be unstable for as little as -7% uncertainty

in I_ with +8% uncertainty in I,. For these inertia variations, the pitch-axis gravity-

gradient torque disappears (/1 - Is = 0) and closed-loop pitch dynamics become

unstat_le. The limitations shown in this example (and several others involving even

smaller inertia uncertainties), are not related to the selection of control logic but

;::are physical __rnitatigns inherent to the current inertia configuration of the Phase

1 Space Station. A description of the inertia variation 'directions' used above is

=presented in the appendix of this paper.

Conclusions

L_

u

w

This paper has presented a new control concept for the planned Space Station

involving asymptotic momentum management of control moment gyros. It has

been sh0wn that th__e proposed controller tunes the Space Station, which has a

gravitationally 'unstable' inertia configuration, to a stable, oscillatory motion which

minimizes the control effort needed at the steady-state. By utilizing the concepts of

quaternion feedback control and periodic-disturbance rejection filters, the proposed

controller provides robust control of the Space Station for large-angle pitch motions.

The pitch-coupled roll/yaw equations of motion derived in this paper have been

shown to be particularly Useful in roll/yaw controller design and stability analysis.
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Appendix: Inertia Variations for Checking Closed-Loop Stability

It is a common practice in control design to satisfy time and frequency-domain

requirements first, then check for closed-loop robustness. For spacecraft, inertial

properties may be very: ser_s]_ive parameters =in the closed-i_p system. It seems

reasonable to increase and decrease all inertias by the same percentage, thus check-

ing controller et_ectlveness i'or a pr0por_ionalIs;_heavier andiighter spacecraft. This

procedure may not indicate the true inertia sensitivity. It is important to consider

the magnitude and direction of the variati0n for each inertia value' Since the inertia

matrix may be transformed to three principal moments of inertia _)y aligning the

body and principal axes, suggestions for variations in the moments of inertia for

the roll (/1), pitch (/2), and yaw (I3) axes are presented here.

Three important relationships may be derived from the definitions for the mo-

ments of inertia. These relationships axe as follows:

£ +/2 > r3, /, +/3

Together, these relations define the physically possible inertia configazrations. A

control designer may unknowingly use inertia veriations which result in inertia val-

ues that violate these constraints. Stability of the closed-loop system will be tested

for a physically impossible inertia configuration: The important point is not the

fictitious inertias but whether or not the control designer can redirect this extrane-

ous stability margin to encompass more of the region of physically possible inertia

values.

When gravity-gradient torque is used in the control of a spacecraft, additional

inertia constraints are introduced. The control scheme presented in this paper is a

good example. Equations (14) show that the additional constraints are I2 _/3 and

/1 ¢/3 since/2 =/3 and/1 =/3 correspond to zero gravity-gradient torque in the

roll and pitch axes, respectively.

A useful aid for visualizing the relationship between inertia constraints and iner-

tia variations is now presented. Figure A.1 shows a three-dimensional, cubic figure

defined in thrce 'inertial' directions. The inertia constraint relations may now be

visualized as planes in this 'inertial' space. The planes I1 + I2 -/3, Il +/3 = I_, and

/2 +/3 - Il are labeled in Fig. A.1, and represent the physical boundaries of inertia

values. The area inside the three intersecting boundaries represents all physically

16
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possible inertiaconfigurations.A representation of the cut-away portion of the 'in-

_ ertiacube' is shgwn in Fig. A.2. Planes defining the physical and gravity-gradient

boundaries are labeled. Spacecraft inertia configurations which are open-loop stable

for gravity-gradien t control s_chemes =may be identified by requiring positive coeffi-

cients for the open-loop pitch, and roll/yaw characteristic equations (see Fig. A.2).

The resulting stable configurations are represented by the region in Figs. A.1 and

A.2 where I2 > fl >/'3. Figures A.1 and A.2 provide a three-dimensional represen-

tation of the information presented in the ]_3 versus kl inertia ratio plots found in

[5, 6]. It may be convenient to normalize the moments of inertia being studied by

_/ff +/_ + _ in order to locate the position of the nominal configuration within

a 'unit inertia cube'. The relative positioning of the nominal inertia configuration

from the constraint boundaries can then be easily determined.

Since the shortest distance from a point to a plane is in a direction perpendicular

to that plane, it seems logical to check inertia variations in directions perpendicular

to the inertia boundaries. In this way, the minimum variation necessary to reach

a physical boundary can be found while checking the closed-loop stability of the

system in question. For gravity-gradient control systems, inertia variations perpen-

dicular to the planes I1 = I2 and I2 = I3 are needed. It may be seen in Fig. A.2

that these planes intersect inside the region of physically possible inertia values,

and partition the region into several sections. It should be a control designers' goal

to include the area within the physical boundaries inside a 'control surface' which

contains all of the inertia values for which the closed-loop system is stable.
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Table 1. Space station inertia

configurations

Inertia Assembly Phase 1

(slug-ft 2) Flight#3

[11 23.22E6 50.28E6

I2_ 1.30E6 10.80E6

I33 23.23E6 58.57E6

[12 -0.023E6 -0.39E6

/13 0.477E6 0.16E6

I23 -0.011E6 0.16E6

Table 2. Phase 1 aerodynamic torque models

:: (in units of ft-lbs)

Wl

: \_± :

W2

W3

1-{-}in(nti+0.5sin (2nt) •

_: -_0:3s]n(3nt)+0.Ssin(4nt)

13 ° + 1.2sin(nt)+3.Ssin(2nt)

.... +0.3s!n(3nt) +0.Ssin(4nt)

1 +sin(n t)+0.Ssin( 2n t)

-+0.3sin(3nt)+0.Ssin(4nt)

* nominal pitch bias torque is 4 but 13 is used

to produce a large pitch TEA

Table 3. Phase 1 closed-loop eigenvalues

(in units of orbital rate - 0.0011 rad/sec)

==.

Momentum/Attitude Disturbance Filters

Pitch -1.0, -1.5 -1.5+jl.5 -0.3±jl.0 -0.3±j2.0

-0.3±j3.0 -0.3±j4.0

Roll/Yaw -0.23, -0.71 -0.53±jl.54

-1.04±j0.70 -1.06±j0.71

-0.14±j0.99

-0.19±j2.01

-0.32±j3.02

-0.55±j3.97

-1.13±j0.75

-0.47±j2.20

-0.0S_j3.21

-0.25±j4.00

-=
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Table 4. Phase 1 controller gains

g

Pitch

[K2] r

4.2425E+2

2.5412E+5

1.4840E-2

4.0150E-6

-1.9064E-9

2.1970E-6

-4.6097E-9

-5.2383E-7

-5.3793E-9

-1.9423E-6

-7.34.58E-9

-2.6056E-6

Units

(ft-lb/rad)

(ft-lb-see/rad)

(ft-lb/ft-lb-sec)

(f't-lb/f't-lb-sec 2)

(ft-ll>-rad2/ft-lb-sec3)

(ft-lb-rad2/ft-lb-sec2)

(ft-lb-rad2/ft-lb-sec_)

(ft-Ib-rad=/ft-lb-sec2)

(ft-lb-rad_/ft-lb-sec3)

(ft-ll>-rad2/ft-lb-sec2)

(ft-lb-rad21ft-lb-seca)

(ft-lb-radZlft-lb-sec_)

Roll/Yaw"

•
3.8526E+3

1.2003E+6

1.4360E-2

-1.6361E-6

3.6578E-I0

7.6282E-7

-3.2712E-9

-3.3865E-7

-1.0702E-8

-3.4827E-6

-1.5903E-8

-3.1256E-6

9.4016E+2

-1.2743E+5

-2.4992E-3

-7.3398E-'7

4.8557E-9

3.7017E-7

2.O6O8E-9

1.8854E-6

4.0142E-10

1.5548E-6

8.3363E- 10

1.3125E-6

3.7381E+2

1.0126E+5

1.9364E-3

2.7852E-7

-1.8526E-10

1.1857E-7

-5.7517E-10

-1.6409E-7

-1.1317E-9

-5.3664E-7

-1.5491E-9

-4.7197E-7

2.4994E+2

1.1386E+5

-3.5209E-3

-1.0348E-6

-5.5935E-10

-4.2651E-6

-6.8224E-10

-2.4769E-6

9.4962E- 10

-2.7820E-6

8.3453E-10

-2.5757E-6

Units

(ft-lb/rad)

(ft-lb-sec/rad)

(ft-lb/ft-lb-sec)

(ft-lb/ft-lb-sec 2)

(ft-lb-rad2/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec 2)

(ft-lb-rad2/ft-lb-sec 3)

(ft-lb-rad2/i't-lb-sec _)

(ft-lb-rad2/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec 2)

(ft-lb-rad2/ft-lb-sec 3)

(ft.lb-rad2/ft-lb-sec _)

(ft-lb/rad)

(ft-lb-sec/rad)

(ft-lb/ft-lb-sec)

(ft-lb/ft-lb-sec 2)

(ft-lb-rad2/ft-lb-sec 3)

(ft-lb-rad2/ft-lb-sec 2)

(ft-lb-rad 2/ft-lb-sec 3)

(ft-lb-rad 2/ft-lb-sec 2)

(ft-lb tad2/ft-lb-sec 3)

(ft-lb-rad 2/ft-lb-sec 2)

(ft-lb-rad 2/ft-lb-sec 3)

(ft-lb-rad2/ft.lb-sec 2)

* Designed for a pitch TEA of 0 °
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Fig. 1. A quaternion feedback control system
for the Space Station.
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Open-loop characteristic equations for a spacecraft with a

gravity-gradient control scheme:

Pitchaxis:

Roll/yaw axes:

I2{s 2 A- 3n2k2} = 0

hI_{__+ ,_-[1+ 3k_+ kik_]_2+ 4_%k_} = o

where k_ = (I2 - £)/f_, k2 = (/1 - I3)/I2, and k3 = (I2 - I1)/I3.

I1+I2 = I3

I3> I_ > Is

X_>Is>I3

II

/3>/2> I_

Is>/3> I_

//

Fig. A.2_ Regions within the physical boundaries.
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